

Renewal of data collection system at the
Department of Environmental Science

and renewal of relevant connected systems

Morten Toudahl

Summary
This document describes how we worked as consultants for the Department of Environmental Science at
Aarhus University and how we created prototypes as proof of concept for how they could improve upon
their existing air measurements data gathering system.

A conflict
You may notice that this report is similar to an other report that has been turned in. The reason for this is
that two days before the deadline, the two members of this group had a serious conflict. Because of this
it was no longer possible to work together nor take a joint exam.

The majority of the report has been rewritten by Morten Toudahl. I have however edited the remaining
sections that was written by Lárus Þór Jóhannsson, some more than others.

So please, take extra care when reading both mine and Lárus’ report, as they are similar, but by no
means identical.

Distribution permissions
This document is not to be distributed unless for the explicit purpose of grading within Zealands Institute
of Business & Technology (Zibat) or by the permission of the author.

1 of 58

Table of contents

Summary 1

A conflict 1

Distribution permissions 1

Introduction 5

Project establishment 6

Team contract 6

System Introduction 7

Client 7

Problem definition 8

Methodologies 9

Research 9

Development 9

eXtreme Programming (XP) 9

Unified Process 11

Scrum 12

Kanban 13

Our way 13

Existing system 16

Internet connectivity 17

Serial (RS-232) and Serial device server 18

Measuring instruments 18

Data gathering 19

Database 19

System analysis 20

Updated system 22

Value proposition 23

System description 24

Station 24

Main server 25

Custom protocol 26

2 of 58

Requirements 27

How to set it up 27

Router configuration 28

Port Ranges 30

Issues 31

Prototypes for the new system 31

1st week (28th nov - 2nd dec) 32

Controller web site v1 33

2nd week (5th dec - 9th dec) 34

Instrument interface class library v1 34

3rd week (12th dec - 16th dec) 36

Instrument Interface Class Library v2 36

Controller program v1 37

4th week (19th dec - 23rd dec) 39

5th week (26th dec - 30th dec) 40

Controller program v2 40

6th week (2nd jan - 6th jan) 42

Controller Program v3 42

Error handling 43

Retrospective 43

Code Examples 44

Instrument communicator 44

CommunicationHandler 45

Unit tests of instrument handler 46

CpClient 47

CommandResultHandler 48

Reflection and conclusion 49

Appendix 50

Instrument overview. 50

Procomm Plus Script. 52

Diagrams 53

3 of 58

Locations 55

Bibliography 56

4 of 58

Introduction
This report is written as a graduation dissertation at Zealands Institute of Business & Technology by the
following students:

Morten Toudahl (b. 1985), local student from Denmark. He has previously completed a Webintegrator +
3D education. He started on the Computer Science AP degree in September 2014, and is currently
working as a student developer for the Department of Environmental Science at Aarhus University,
improving their website for the presentation of the data gathered by their measuring stations.

Lárus Þór Jóhannsson (b. 1987), international student from Iceland. Finished Icelandic upper-secondary
education in 2008 and completed a film production diploma 2010 from Prague Film School. Attended
Zibat AP Computer Science program since 2014. Currently working as a contracted student developer for
the danish engineering company FLSmidth A/S.

The dissertation supervisor from Zibat is Anders ​Kristian Børjesson.

The client is the Danish Centre for Environment and Energy, a department in the Science & Technology
branch of Aarhus University.

Morten had already established good relations with the client during his time there as an intern, and he
realized the potential for improvements on the system that ensures the collection of environmental data.

Our assigned manager from Aarhus University is Keld Mortensen, the IT manager for the department,
who is responsible for maintaining the current system.

5 of 58

Project establishment
Morten had initially made an arrangement with the dept. of Environmental Science to look at, and if
possible, improve their data collection system. Later on, Lárus joined Morten. They have both worked
together before, and compliment each other well in a project. Nevertheless, this new project meant that
it would now be beneficial to agree on some working terms.

Team contract

Due to Lárus’ job, the team is unable to meet up and work every day. So we agreed to the following
conditions.

● Until week 49, the team will meet up twice a week to work together and be able to discuss
various topics face to face.

○ The days may change to suit each participant's schedule, but will be Monday and Tuesday
by default.

● When the team agree that it is no longer necessary to meet twice a week, they will start meeting
face to face only once a week.

○ Default will be Tuesday, but this can be changed to fit each participant’s schedule.
● Each person will also work alone, when not meeting up with the other person.

○ This will be at least one day a week, but preferably two.
○ Which day(s) is to be determined individually.

● Additional days can be agreed upon verbally or written should the need arise. I.e. in case of
crunch time.

● Communication
○ The team will use appropriate means of communication depending on the urgency and

type of information that needs to be passed along. E.g. email for documents, phone
call/text to inform of tardiness.

○ If a member is late or cannot come for whatever reason, he must notify the other person.
○ The team will utilize a kanban board for project management, daily reports and keeping

track of our progress. Specifically Trello 1

● Version control
○ Version control must be used. The implementation of version control will be git. We will

use the host bitbucket.org
■ It is forbidden to check in code that does not compile or otherwise does not

work.

1 Kanban board - ​https://trello.com/b/NnBT42jG/dissertation

6 of 58

https://trello.com/b/NnBT42jG/dissertation

System Introduction

On the day Lárus arrived at the department of Environmental Science we were given a tour of their
campus and general tour of the Risø research area, the facility where the department is located.

This included a thorough presentation of the stations, and the architecture of the system. Both the
overall architecture, but also at the application level of the data collection.

It also included a closer look at the test station located at Risø, and a good look at all of the hardware
located at these stations, plus a look at the applications running on the instruments and station
computers.

This allowed us to quickly come up with some ideas on what to improve, and gave us a good
understanding of how their system operates.

Client
Our client is the Department of Environmental Science at Aarhus University. The university is considered
among the top 100 universities in the world . It is involved in education, research and has contracts with 2

the danish government in multiple fields of study.

Under the university's administration we have the rector, the prorector, the university director and the
deans of each field of study (e.g. Arts, Health, Science and technology). Inside of these fields there are
multiple departments. Most of these departments provide one or more of the following: academic
education, research and/or monitoring for the government i.e. for data regarding public health and
environmental safety.

A good example of one of these monitoring agencies is the Department of Environmental Science /
Institut for miljøvidenskab. This agency was previously called Denmark's Environmental Research (DMU -
Danmarks miljøundersøgelse). It was contracted by the government to provide it with atmospheric data,
that adhere to standards set by the European Union for measurements of air quality to be used in larger
atmospheric models to monitor and predict global atmospheric conditions. This contract remained with
the agency when it merged with Aarhus University which gives this department the atypical standing of
being a monitoring agency that provides data for research activities, but has little to no involvement in
actual education, aside from providing thesis students with assistance.

Since the 70’s the department has gathered data regarding various compounds in the air, along with
basic measurements of temperature, wind speed and direction. The measurements are carried out at 15
stations across the country, portable campaigns, as well as a single station in Greenland.

2 Times Higher Education World University Rankings -
https://www.timeshighereducation.com/world-university-rankings/2017/world-ranking#!/page/0/length/25/country/22
56/sort_by/rank_label/sort_order/asc/cols/rank_only

7 of 58

https://www.timeshighereducation.com/world-university-rankings/2017/world-ranking#!/page/0/length/25/country/2256/sort_by/rank_label/sort_order/asc/cols/rank_only
https://www.timeshighereducation.com/world-university-rankings/2017/world-ranking#!/page/0/length/25/country/2256/sort_by/rank_label/sort_order/asc/cols/rank_only

Problem definition
Talking with members of the department we have discovered that most parts of the system have been
developed as the need for them arose. The core architecture was developed back in the 70’s. Some
renewal of the system has been implemented, but most of it works like it has since the beginning with ad
hoc changes. E.g. changing from communicating over the phone lines to using a mobile modem.

The result of this is a slow and unnecessarily complicated system, as a direct result of the patchwork of
upgrades and modifications applied over the years, leading to our problem definition:

How can the system be modified to decrease complexity and increase effectiveness?

To answer this, we plan to look at the following:

● How do the instruments integrate with the current data gathering system, and how can this be
improved?

● How does the current system collect the data from the instruments, and how can this be
improved?

● How is the data stored in the current system, and how can this be improved?
● What issues does the current system have?
● What issues could the new system have?

We also wish to expand our own skills by answering the following questions:

● Where can I improve as IT system developers?
● What can I do better when designing a system for a client?
● How do we best ensure a high quality communication with the client?

We will do this by analyzing information provided by the department, and building prototypes and proof
of concept programs that we will deploy on new hardware and test with instruments provided by the
department.

8 of 58

Methodologies
The team established certain methodologies to assist us in managing workload, follow a value driven
development mind-set, and ensuring the quality of our work. We would be drawing upon what we had
learned at Zibat about software development methodologies, researching a viable research methodology
and taking a critical eye at every one of them.

The software methodologies will be the guiding aspects of our project work and the research
methodology will come into play when we are gathering data and gathering our conclusions from that
data for this dissertation.

Research
The department already has all the knowledge we need. For this reason, I took an approach inspired by
eXtreme Programming's principles, KISS and YAGNI.

I requested copies of the documentation for the instruments, and other relevant documents or scripts.
These documents was then examined on a need to know basis, using something akin to the hermeneutic
circle.

That is. When we needed to do work with an instrument, I would read what I needed to to complete my
task. If I then found out we needed more information, I would then continue to that, until such at time I
felt informed enough to finish my task.

Development
There must be a clear understanding that we are not shipping a deliverable product, but incrementally
creating prototypes. These prototypes will perform their core function, and they will interact together.
However, they will not be complete, and thus not ready for production. Should the department chose to
implement the system we suggest, they must expect to put in more work to polish the pieces and add all
of the needed functionality.

Below I will sum up the methodologies that we considered for our project.

eXtreme Programming (XP) 3

XP is a very flexible and agile methodology. It is easily adaptable, and feels natural for both of us to work
with. For this reason, it was the first methodology we thought of. It consists of the following practices:

● Whole team
○ This practice dictates that everyone should work closely together, to ensure that the

software written fulfills the needs of the client.
● Pair programming

○ This practice helps with collective ownership of the code, while also improving the quality
of the code written.

● User Stories
○ User stories document the requirements and the needs of the client, while also serving as

a checkbox to verify that a feature has been completed.

3 Agile Principles, Patterns, and Practices in C#, chapter 2
ISBN: 978-0131857254

9 of 58

● Short cycles (iteration plan, release plan)
○ Deliverable software every two weeks.

● Acceptance tests
○ Used to verify the completion of User Stories.

● Test-driven Development (TDD)
○ Write a test, before you write a piece of code.

● Collective ownership
○ Anyone can work on any module to improve it.

● Continuous integration
○ All code written is properly integrated into the existing code. Any finished code is pushed

to a testing or production server as soon as it has been accepted.
● Sustainable pace

○ “Software development is not a sprint; it is a marathon” . XP teams are not allowed to 4

work overtime, as this is detrimental to the quality of the software.
● Open workspace

○ Everyone works together in the same rooms, communicating about progress and issues
concerning the development process.

● Planning game
○ The planning game helps with assigning points to a user story, which in turn will help with

the release plan.
● Simple design

○ “Do the simplest thing that could work”. As in, do not implement a database before it is
absolutely required.

○ “You aren’t going to need it”. Do not try to predict what you will need. Wait until you
need it.

● Refactoring
○ Any time you work on code, you must improve it by refactoring. This is not done at the

end of the project.
● Metaphor

○ The practice of using metaphors to describe and understand the project as a whole. This
can also help with choosing meaningful names for methods and classes, etc.

4 Agile Principles, Patterns, and Practices in C#, p 18
ISBN: 978-0131857254

10 of 58

Unified Process 5

Unified process was the first software development methodology we learned at our school. It is a very
documentation heavy, with a lot of artifacts and disciplines. However, it is stated that any of the artifacts
only to be created if they provide value. It is a risk driven process using iterative incremental
development. This means that the Use case with the highest risk associated with it will be focused on
first. While reserving the right to go back to previous parts of the system to elaborate or change, based
on feedback or new knowledge.

It describes how to gather the requirements of the system, how to analyze the requirements and use
that analysis to design the code. It also has instructions for how to plan and manage releases.

There are four phases in Unified Process

● Inception
○ Smallest phase, used to explore viability of the product. Establish project scope, identify

risk and come up with candidate architectures.
● Elaboration

○ Complete the use cases with the highest risk, while identifying the majority of the system
requirements and compiling them into Use Cases.

● Construction
○ This is the largest phase in the project. The remaining part of the system is build.

● Transition
○ The system is deployed, feedback is gathered and users are trained. Corrections and

changes are also implemented when needed.

5 Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development (3rd
Edition)
ISBN: 978-0131489066

11 of 58

Scrum 6

Scrum is not specifically a software development tool, but rather a tool for planning your work, and
measuring the progress of your work. It is however, often used by software development teams to
structure their work, which naturally made us take it into consideration.

In scrum, you will find the following practices and concepts.

● Product owner
○ Has knowledge about the domain that is being worked on, and manages contact with

stakeholders.
● Sprint planning meeting

○ Meeting where the entire team agrees on what needs to be done in the coming sprint.
● Product backlog

○ A list of work that needs to be done. Managed by the Product Owner.
● Sprint backlog

○ List of items that need to be completed in the current sprint.
● Scrum master

○ Ensures that everyone follows the scrum principles, facilitates interactions with people
outside the team and removes obstacles that the team runs into.

● Daily scrum meeting
○ Short meeting where everyone informs the others of the progress they have made, and

any potential issues they are having.
● Sprint review

○ The result of the sprint are shown to the Product Owner, and the stakeholders for
approval.

● Sprint retrospective
○ The team talks about any potential issues, and how to improve their work.

● Burn down/up chart
○ Can be used to track overall project progress.

6 Scrum guide - ​https://www.scrumalliance.org/why-scrum/scrum-guide

12 of 58

https://www.scrumalliance.org/why-scrum/scrum-guide

Kanban 7

Kanban is a planning framework much like scrum, with a few differences. It focuses on a continuous
workflow without iterations or sprints. It utilizes continuous delivery by default and embraces change at
any point.

To achieve this, practitioners limit themselves to a set amount of work-in-progress items in each
category of the kanban board. E.g Two items in the “code review” category, 4 items the “in progress”
category.

● Planning flexibility
○ No fixed length iterations. Anyone,at any time, can pick an item off the top of the

backlog.
● Shortened cycle times

○ By having overlapping skills, cycle times decrease.
● Fewer bottlenecks

○ Set a limit on how many items can be in each state. E.g only two items in code review.
● Visual metrics

○ Visualize the workflow using charts and diagrams, to better identify bottlenecks.
● Continuous delivery

○ With only a few work-in-progress items, the speed of continuously delivery increases.

Our way
Having considered the above software development methodologies, we decided we would pick the
practices that best fit our work mentality and the project itself.

We decided against using any of the process and activities from Unified Process. Having roughly one
year’s worth of school work experience with unified process, we knew that it was too documentation
oriented for our need. We had no use for the details of Use Cases which is the central point of the
Unified Process. Nor did we need the artifacts that is the main product, next after the software solution it
self.

We ended up using a mix of Scrum, Kanban and eXtreme Programming.

From Scrum, we used the concept of a Product Owner, but modified to better fit our needs. Each section
of the system have their own experts. Therefore we had multiple “Product Owners” depending on what
part of the system we needed information and feedback about. Which is not exactly the same tasks a
scrum Product Owner manages. The rest of the normal Product Owner tasks, was taken care of by us.

For managing our workflow we utilized kanban. But again, not in its full form. We did not feel the need to
visualize our workflow, since we are only two people. The availability and use of the digital kanban board
“Trello” was enough, because of our two man team, and the ease at which we could communicate.

Following the continuous delivery practice of kanban was not relevant to us, since we were only creating
prototypes. As these prototypes are not intended to be delivered for the client to implement, it did not
make sense to follow this practice.

7 The kanban methodology - ​https://www.atlassian.com/agile/kanban

13 of 58

https://www.atlassian.com/agile/kanban

We took the most inspiration from eXtreme Programming. The following practices were used:

● Whole team
● Pair programming
● Collective ownership
● Continuous integration
● Sustainable pace
● Open workspace
● Simple design
● Refactoring

With only two people sitting in the same room most of the time, and our clients sitting one floor below

us, it was easy for us to follow the practices, ​“whole team”, “pair programming”, “open workspace” and
“collective ownership”.

Following the days we had to work individually, we would go over the work each of us had done to get

up to speed.
“Continuous integration”​ came naturally as we required compilable code before check in to our version
control system.

“Sustainable pace”​ was very important to us. We cannot make high quality work if we burn ourselves

out.

“Simple design” and “refactoring”​ : Both of us put personal pride in making quality code. To do so, we

believe that these two principles are an important tool in achieving that.

As you can see from the list, some of the principles are missing from the above list.

● User Stories
● Short cycles (iteration plan, release plan)
● Acceptance tests
● Test-driven Development (TDD)
● Planning game

We have never used ​“Test-driven development”​ , which we found to be a big problem because it would

slow our development speed down significantly, if we had to learn how to do this while developing this
project. Morten had also read a research paper regarding ​“Test-driven development”​ , which concluded: 8

 “TDD does not affect testing effort, software external quality, and developers’

productivity.” 9

8 ​An External Replication on the Effects of Test-driven Development Using a Multi-site Blind Analysis Approach
9 Ibid, taken from the conclusion

14 of 58

https://drive.google.com/open?id=0BwGU_UCX-H6BSmVHZVlGZnlfZDQ

Which we interpreted as; unless we purposely skip testing, it would not matter if we implemented
“Test-driven development” or not.

Using ​“Short cycles”​ contradicts the purpose of us adopting kanban. Therefore it was not used.

Since we did not use ​“User stories”​ , there was no basis for ​“Acceptance Tests”​ nor the ​“Planning Game”.
From the beginning we analyzed the system, to map out the architecture, which we again broke down
into components, and talked with the users to find out what kind of requirements they have.

After having done so, we removed the unnecessary parts, and added tasks to our kanban board to
complete in order to implement the new architecture, we came up with.

Having regular conversations with the technicians and other users of the system, we modified and
updated the requirements for each part in a continuous flow, following the principles of kanban.

Note: ​ For lack of a better word, the phrase “user story”, “story” or a variation thereof will be used to
refer to the tasks we created for the rest of the report.

15 of 58

Existing system

At Lárus’ welcome meeting with Keld
Mortensen, Keld made a presentation of the
existing system. In the following I will try to
sum up the information provided by him.

Currently there are 15 stations. These
stations contain at least 3 instruments,
however most contain more than that. The
instruments are then connected to a local
desktop computer, either directly through a
serial cable, through router + serial device
server, or router + ethernet cable. Bottles of
gas are also connected to the computer, and
hooked up to the instruments with tubes.
These are used to calculate the inaccuracies
that each instrument gets over time. This is
called zero/span measurements.

The computer then collects the data from the
instruments. Once an hour a desktop
computer, located at the department itself,
will then synchronously open up ftp
connections to each station computer to

collect the data.

At the local desktop computer, the data is saved into raw data files, and saved to disk. The raw data files
will then be read, and the data in them will be added into the database. After which a store procedure
will run, based on a predefined schedule, and make the necessary correction based upon the zero/span
measurements, and add the corrected values to a table called Data_Warehouse. The procedure will also
look at older data to see if any manual corrections has been made to the data.

16 of 58

Overview of the full existing system

Internet connectivity
Aside from the station in Greenland, all the stations are connected to the internet using a Dovado PRO
AC router, and an USB mobile network modem. 10

The connection is set up to use a mobile access point name (APN). The use of an APN means that the
mobile modem is connecting directly to a server in Aarhus University’s intranet. This means that there 11

are no immediate concerns about WAN access to the routers, as the AU firewall does not allow that.

Although the feature list of the router boasts of a SPI firewall , the menu does not offer any way to 12

configure this, nor does the manual mention any firewall, except to inform that it will be off if the router
is in Bridge Mode, and circumvented by UPnP.

The wireless feature of the router is not used by the instruments or the station desktop, so it has been
disabled to prevent wireless attacks.

10 ​http://www.dovado.com/images/PDF/DOVADO_PRO_AC_DATASHEET.pdf
11 Difference between APN and VPN - ​http://smallbusiness.chron.com/difference-between-apn-vs-vpn-38815.html
12 What is an SPI firewall - ​https://www.techwalla.com/articles/what-is-an-spi-firewall

17 of 58

http://www.dovado.com/images/PDF/DOVADO_PRO_AC_DATASHEET.pdf
http://smallbusiness.chron.com/difference-between-apn-vs-vpn-38815.html
https://www.techwalla.com/articles/what-is-an-spi-firewall

Serial (RS-232) and Serial device server
“In computing, a serial port is a serial communication interface through which information transfers in or out one bit at a

time (in contrast to a parallel port). Throughout most of the history of personal computers, data was transferred through

serial port”

- Wikipedia: ​ https://en.wikipedia.org/wiki/Serial_port

Attached to the router you will find a Moxa NPort 5410. This device is known as a serial device server
(Moxa).

A moxa is capable of interfacing with the older instruments that does not have a RJ45 connection - that is
the normal well known network cable. It provides two interfaces, web and telnet based.

However, if the station desktop computer itself has a serial port, the instruments are attached directly to
the computer.

Web and Telnet interface of the moxa

Measuring instruments
At each station we have measuring instruments that are by various manufacturers, have different
measurement processes and measure different things. ie NO​2​, NO​X​, wind speed

Instruments include but are not limited to:

● LVS - Low volume sampler

Measures the weight of particles of different sizes in the air.

● SM200

Is being outphased, very old instrument that uses radioactive materials emitting beta radiation.

● Tapered Element Oscillating Microbalance
● Temperature

Every station has a thermometer inside the station close to other instruments. In each station
there is an air conditioning unit that regulates the temperature. The thermometer is used as a
warning in case of malfunction of the air conditioning unit. Because the instruments will
overheat, and break down.

18 of 58

https://en.wikipedia.org/wiki/Serial_port

● Meteorology instruments

At each station they have a few meteorology instruments that measure wind speed, wind
direction and humidity.

● Teledyne API T100U, T200U, T300U

These are the newest instruments that measure gas concentrations of SO​2​ (sulfur dioxide),
(NOx/NO (nitric oxide and nitrogen dioxide), O​3​ (Ozone), and CO (carbon monoxide). They are
replacing older models from the same manufacturer. These instruments are the most common
on the stations. They have a lot of new features, like accepting commands through TCP/IP
connection and caching of data.

Look in the appendix for a full list of instruments and their capabilities.

Data gathering
The local station computer is regularly communicating with instruments located at the station, to gather
the various data. Once an hour, a computer located at the campus will synchronously open ftp
connections to all of the station computers to gather the raw data files, so it can start processing them.

Database
The departmentis using a Microsoft SQL Server to host their database. The server itself is running on a
desktop computer located in the office of Keld and Rune - the IT employee and database administrator of
the department. Aarhus University has provided a database in their datacenter, which they maintain and
backup, and offer a high Service Level Agreement. However Keld and Rune have had concerns regarding
access rights to the server, and have thus decided to only use it as a backup of their locally run database.

The computer at the department of Environmental Science will run through all the files that it collects
from the stations, interpret the content and add it to the appropriate tables in the database. After the
data has been added to the database, a schedule will start the database procedures that make
corrections to the measurements, based upon the result of the span and zero measurements on the
instruments.

When the procedures are done correcting, a schedule will run a script to synchronize some of the data in
the database with the database hosted and maintained by Aarhus University’s IT department. This is
done to provide up-to-date data for the API and the website, that the department are providing as part
of their duties to inform the public.

Once every 24 hours the entire database are synchronized with the one hosted at Aarhus University IT,
which in turn makes regular backups of the data.

19 of 58

System analysis
We approached the analysis by identifying natures/causes of complexity and then extracting the

resulting issues. Subsequently we looked at the system’s strong points. In the analysis, we will use the

following legend:

❢ ​- Nature / Cause of complexity

➢ ​- Resulting issue

✔​ ​- Existing system’s strong point

❢ Out of 15 stations there are 11 combinations of the required measurements that require

different instruments.

➢ The installation instructions for new stations are provided in a centralized word

document that is 36 pages long, a lot of it is not relevant to all stations. This is very

difficult to keep up to date.

➢ The installation instructions include a lot of software and hardware installations that are

described step by step in danish by a department employee. This kind of personal

narrative by an employee can result in misunderstandings and/or errors in the steps. As

opposed to a more technical standardized document.

➢ Stations are distributed over the country so to maintain them multiple technicians are

needed. Their salary and transportation cost is needed but is a big expense factor.

➢ Repair and replacement requires a person from the department to drive to the station.

❢ The instruments vary greatly in output, interface and work processes.

➢ The instrument measure very different inputs (e.g. gas concentration, particles,

meteorological data (wind speed, wind direction), temperature...). That includes a lot of

different algorithms for each data set that are hard to maintain. The system executes

these algorithms at the controller server who already has a lot of responsibilities.

➢ The gas concentration measuring devices has 2 phases:

■ Measurements phase: Does measurements over the course of a minute and

averages the readings to represent a period of 5 minutes.

■ Calibration phase. Depending on the gas being measured the sources for these

readings can either come from an internal tube storing the air or an external tube

controlled through the instrument or the station computer:

● Zero (nul): takes in air with zero concentration of the measured gas. The

offset is then accounted for when storing the normal measurements.

● Span: takes in air with a very dense concentration of the measured gas.

The offset is then accounted for when storing the normal measurements.

❢ The danish government regularly updates requirements of how the measurements are gathered

and how they are delivered. In recent years the European Union also has legislation in place to

make sure that measurement procedures from each member state are able to meet a certain

20 of 58

level of quality, and conform to one another, since they are then used for global environmental

research.

➢ Each revision of the contract between department of Environmental Science and the

danish government have introduced changes. These can affect how our system should

run. The existing system has difficulty in implementing new changes issued by EU about

changing the zero/span phase duration due to them being specified in a very old script

file using a deprecated language with discontinued support. One of the scripts can be

seen in the appendix.

❢ The production database is old and has been extended upon multiple times, and with the

introduction of a centralized university database the roles of these two databases and their

interactions have not been clearly defined.

➢ It takes up to 1 hour and 35 minutes to get the data to the production database and then

up to 20 extra minutes to move selected data to the Aarhus University IT database.

➢ The relationship between the production database and the Aarhus University IT database

was instigated by the need to retain liberal user access. This liberal access introduces

some security issues.

✔ The retention of the production database on a server directly controlled by the

department means lesser restrictions in place regarding access and management.

➢ 4 aspects for db issues

■ The schema has been extended upon for many years without refactoring.

■ It doesn’t follow best-practices. A lot of normalization needed.

■ Database best-practices have changed since the database was created.

Specifically, the normal forms was defined by Edgar Codd in 1971 13

■ A lot of redundant/legacy data that can be done away with.

❢ Municipalities have opposed moving or setting up new stations in city centres due to aesthetic

considerations and the size of them. The department has started work on limiting the size of new

stations.

➢ It results in a lot of downtime of stations working with the municipalities to find a

suitable place for a station.

➢ Dealing with the bureaucracy involved in getting the stations where they are needed,

takes up time that could be better spent elsewhere.

✔ There have not been any system-wide breakdowns.

✔ Data modellers are pleased with the access to the data they need.

✔ The system has documentation for a person with rudimentary computer knowledge to

understand how to set up all components in the stations, maintain them and how they work.

✔ Has not needed a large team to implement and maintain.

13 Reference to book/publication -​ https://en.wikipedia.org/wiki/First_normal_form#cite_note-2

21 of 58

https://en.wikipedia.org/wiki/First_normal_form#cite_note-2

Updated system
After having worked on the system for several weeks, we believe that we have created a good suggestion
for how to build an alternative data gathering system. The department are moving away from having
multiple brands of instruments and slowly switching over to using teledyne instruments. This means that
our suggested solution will become more attractive.

Overview of proposed architecture

22 of 58

Value proposition
After we analyzed the existing system we wrote the value proposition. Here we discuss what we could
improve upon with the updated system and use that as a reference to realize what we can contribute
and how to prioritize the work.

One thing that we found would contribute to all 4 points is to put high emphasis on code quality. The IT
people working at the department of Environmental Science have done a great job in building the
existing system and maintaining it, and we can hopefully make it easier for them doing both with the
existing system, by writing code that is easy for them to scale, performs well, is easily reusable and
maintainable.

1. Scalability

a. Fewer software components, more standardized station layout, fewer
hardware components and fewer drivers:​ Setting up new stations or changing the setup

of existing stations is easier. Fewer man hours that go into that and the risk of errors

during setup are lowered.

b. Utilizing well established and current technologies:​ Support in the form of

documentation and updates can assist us if any problems arise.

2. Performance

a. Create a new persistency system for instruments:​ Some instruments does not have the

ability to persist the data in their buffer. This means that in case of equipment or power

failure, the data would be lost. With the new system, it would pose a problem not

implementing persistence in a new way. Because of the removed station computer.

b. Time to database: ​Decrease the time it takes to get measurements from the instruments

to the production database, by writing directly into the database before creating raw

data files.

c. Make the controller program asynchronous:​ Now the controller is looping through each

station and requesting data. By making it asynchronous we can make the data acquisition

faster.

d. Increased accuracy:​ By redefining the format and aggregation of the data between the

instrument and database we can increase resolution of the measurements. This can be

used to more accurately remove single erroneous measurements and provides the

correction algorithm with more data to base its corrections on.

3. Usability

a. Utilizing web applications: ​Easy to use graphical interface where we can easily create a

front-end application both for looking at the status and directly control of one or more

stations. Visual graphs in web applications are very powerful and customizable. This

allows users to access currently local applications to be accessed remotely.

4. Maintainability

a. Utilizing a single board computer: ​Hardware that is cheaper and easier for quick

replacement in case of hardware failure.

23 of 58

System description
We have created an architecture that we believe is flexible, and easily expandable. The system has fewer
points of maintenance than the original system, because it is comprised of fewer parts. At the same time,
the important parts of the system is run locally on campus, while still providing access to them while on
the road, e.g in case they need to be accessed while at a station. In case of breakdowns on the stations
themselves, it will be quick to get back up and running with preconfigured routers and preconfigured
images.

In the new system, you will find:

● Station
○ Router using an USB modem.
○ Instruments.
○ Moxa, in case of instruments that does not have ethernet capabilities.
○ Raspberry PI , in case of instruments without the ability to store their buffer. 14

● Main server
○ Control program.
○ Logging/control website.

Station

We have seen no reason to change the way that the stations are connected to Aarhus University’s
intranet. So the network connectivity should still be delivered through a router using a usb modem.
There are however some changes necessary to the set up, which will be mentioned in one of the
following sections.

The instruments themselves also remain unchanged, seeing as they are not in our scope of modifications.
However, the way they are set up at the station has changed.

Before they were all connected to a local desktop computer which would handle the gathering of data
from the instruments. Either through serial, moxa or ethernet cable. The data is placed in files, which are
collected once an hour through an FTP connection, initiated by a server at the department.

In the new system, we suggest removing the desktop computer and put the responsibility elsewhere,
which I will elaborate on shortly.

Keld initially asked us to focus on the teledyne instrument, which is where we put our main effort with
prototyping and proof of concept. However, there are other instruments in the system, so we still made
a plan on how to handle those.

In case of a station that houses instruments, that does not have an ethernet cable, the station will
naturally maintain their moxa. The moxa it self can handle 4 instruments through serial and also hosts a
web server to configure said instruments.

Some of the instruments lack the ability to persist their measurements in case of power outage or
instrument failure.

14 What is a Raspberry PI - ​https://pimylifeup.com/what-is-raspberry-pi/

24 of 58

https://pimylifeup.com/what-is-raspberry-pi/

“In the virtual network computing (VNC) system, server machines supply not only
applications and data but also an entire desktop environment that can be accessed from
any Internet-connected machine using a simple software NC. Whenever and wherever a
VNC desktop is accessed, its state and configuration (right down to the position of the
cursor) are exactly the same as when it was last accessed.” 15

On those stations there should be a Raspberry PI running raspbian. This PI, would be running a program
to constantly gather data from the instruments that cannot persist data, which would then be stored
locally in case of failure. The data could then be retrieved through FTP, and added to the main database
at a later point. Running linux on the PI would also enable the department to use VNC, and access the PI
using remote desktop in case the FTP program failed.
This could obviously be achieved through the terminal too, however we feel it would be more user
friendly, and provide a lower learning curve to just offer remote desktop.
Keeping in mind that the department has moved to the Microsoft platform, we would also suggest using
the new .NET core framework in the PI. This would make it possible to write C# code to execute on the
PI.

Main server

On the main server, there will be a control program running in the form of a console application. This
program will be doing multiple things at the same time. The most important of these tasks is talking with
all the instruments.

It will, with regular intervals, spin up multiple threads and establish a TCP/IP connection with all of the
instruments, collect the data they have gathered since last connection and insert that data into the
database.

At the same time, it will also host a TCP/IP server, to which it is possible to send commands defined in a
protocol of our own making. This allows for control of the console application, and basic create, read,
update and delete operations of stations and instruments.

15 ​Virtual Network Computing - https://www.cl.cam.ac.uk/research/dtg/attarchive/pub/docs/att/tr.98.1.pdf

25 of 58

https://www.cl.cam.ac.uk/research/dtg/attarchive/pub/docs/att/tr.98.1.pdf

The protocol is defined as the following:

Custom protocol

Format​:

command parameters\r\n

payload\r\n

List of commands:

add <station|instrument> <payload>

delete <station|instrument> <payload>

update <station|instrument> <payload>

start

stop

Payload​:
The payload is a json serialized object, without line breaks.

The payload is required for add and update.

Example​:
update instrument 1234\r\n

{"Id":1234,"InstrumentType":0}\r\n

Evidently, the protocol is simple, and easy to work with. In case someone would wish to build their own
program to manage the control program, it should be a small task to complete.

The main server will also be hosting a website using IIS - Internet Information Services - this website will
centralize the logging into one database. The logging are required to keep track of events that occurred
at a station. The website provides an easier overview of all the stations, and the events that has occurred
there. This task is currently done on each station using the desktop computer on location with the
current system.

At the same time, the website also serves as the frontend for the control program. Using an
implementation of the proprietary communication protocol, it will communicate events to the control
program that is relevant to it. E.g. creating a new station, or modifying an existing one. This is done after
having applied the change to the database.

Although not implemented in the prototype we have made, the website will also be able to detect if the
control program is running or not. And in case that it is not running, it will be able to instantiate a
Process, and start the control program. This should mean that it will not be necessary to remote into, or
otherwise actively use the computer hosting the website/control program at any point.

26 of 58

Requirements

The requirements are quite low for the new system to run. One computer running on the local network
to host the website, and the control program. Aside from that a properly configured router and possibly
one raspberry pi on some of the stations.

How to set it up

At the station, one would need to install instruments and the supporting equipment as usual. The
instruments will then need to be connected to the router. In case of instruments that do not support
ethernet connectivity, a moxa would need to be installed. In case of instruments that are unable to
persist the data in their buffers, a raspberry pi would also need to be installed.

After that is in place, the control program and website needs to be placed on a server that is only
reachable when connected to Aarhus University’s intranet. Either from AU’s premises, or through VPN, if
located elsewhere.

This is because the control program is hosting a TCP/IP server, which does not implement authentication
or authorization of any kind. The server itself should implement a firewall, that only allows TCP packages
on ports 80, 443, and both TCP and UDP on port 3389. Since the server would be physically close to the
people responsible for it, there should be no need to allow wake-on-lan. However, if that is a feature that
is desired, one would also need to open port 9 for the UDP protocol.

This set up will ensure that it is not possible to communicate with the control program, except using the
website. The website will also enforce the use of https, while enjoying the protection of Aarhus
University’s corporate grade firewall.

The department asked us to focus mainly on the instruments of the teledyne brand. They have a lot of
functionality that some of the other instruments do not have. However, if our new system were to
support all of the instruments, it would also be necessary to set up a moxa and a Raspberry PI. I will only
be going into the detail of our proposed Raspberry PI set up, since configuring the moxa is not going to
be different than what the department usually does.

To install the operating system on the Raspberry PI, one would need to use a program that can flash
images to SD cards. The one that we used is called Win32DiskImager and can be downloaded from
sourceforge . 16

16 Win32DiskImager - ​https://sourceforge.net/projects/win32diskimager/

27 of 58

https://sourceforge.net/projects/win32diskimager/

This program is also able to create an image from an SD card, which is a helpful feature if you want to be
able to deploy fast.

Raspberry PI installation instructions:

1) Go to: https://www.raspberrypi.org/downloads/raspbian/
a) Download the latest image, which is not the LITE version.

2) Extract the image from the zip file.
3) Use Win32DiskImager to flash the image to an SD card.
4) Insert SD card in a Raspberry PI and boot it.
5) In the terminal, run the following command:

sudo apt-get update && sudo apt-get upgrade

After having installed, updated and upgraded the operating system the next step would be to put the
collection program on the PI, and set it up to run automatically on boot and enable VNC . 17 18

Since we were told to focus on the teledyne instruments, we have not prototyped this program.
However, the code would be near identical to what we have already written for the
InstrumentCommunicator, except it would be implemented in .NET core, which would allow it to run on
linux.

The data itself should be placed on a USB thumb drive. This allows for larger amounts of data, and it also
means that in case of redeployment of a Raspberry PI, the technician does not have to worry about
extracting data before swapping out the SD card with another one. If the data was located on the SD
card, it might be accidentally deleted.

Once these steps are complete, an image of the operating system should be created in its current form
using Win32DiskImager. This would enable rapid deployment in the case of hardware failure, and would
only necessitate a few station specific configurations, before deployment.

Router configuration

To be able to talk to the instruments some port forwarding is required. However, it seems that the
dovado routers that the department are currently using with that feature, contains a bug with its port
forwarding. It is only able to do a one-to-one forward of the port, as in forwarding the external port 3000
only to the internal port 3000. However, this setup requires that ports are forwarded differently. I.e. port
7000 to port 3000.

Extensive testing was done with the routers provided by the department , however it was just not
possible to forward like that, even after flashing the newest firmware provided by dovado. Morten then
brought his spare router from home, to show to Keld that it is possible to do so normally.

The router D-Link DIR-855 had no problems forwarding the ports like we desired, despite using a
different name for it. D-link has provided an emulator for the DIR-855 , where you can play around with, 19

and examine the menus and capabilities of the router.

17 Raspbian: Run a Program at Startup - ​http://www.mikeslab.net/?p=176
18 Raspberry PI VNC documentation - ​https://www.raspberrypi.org/documentation/remote-access/vnc/
19 Router emulator -​ http://www.support.dlink.com/emulators/dir855/Virtual_Server.html

28 of 58

http://www.mikeslab.net/?p=176
https://www.raspberrypi.org/documentation/remote-access/vnc/
http://www.support.dlink.com/emulators/dir855/Virtual_Server.html

Image of the menu used to configure port forwarding.

In essence, this means that the department will have to replace the routers, or inform dovado of the bug
and wait for them to fix it in their firmware, which might take a while.

The alternative is not much different. It would require the department to buy new routers like in the
replacement scenario. But instead of replacing the dovado routers, the new routers would be put in a
DMZ behind the dovado router, which would change the Dovado’s role to that of a modem.

The argument for this set-up could be that the new routers do not posses the ability to use USB modems
and APN’s like the dovado do. This ability is an essential requirement of the router.

Our recommendation is to inform dovado of the bug that we have found. While waiting for them to fix
the issue, the set up of the new system should continue. When the set-up reaches the point where it is
just the router part missing, they should be replaced, in case Dovado have not fixed the bug yet.

Even if dovado fixes the bug within a reasonable amount of time, we would still recommend that the
routers are exchanged for a different and well known brand. They only have a few routers under their 20

belt, and the features they claim in the documentation do not seem to exist in the menus. Combined
with the inability to forward ports like we want - suffice it to say, they have not inspired trust in their
product. According to conversations with some of the employees, the smaller router which they used at
first, have also proved to be unreliable in maintaining internet connectivity.

20 Dovado products - ​http://www.dovado.com/en/products

29 of 58

http://www.dovado.com/en/products

There is also the issue of the dovado router only having 4 ports, which limit the stations to 4 instruments
or 4 moxa’s. Or a combination thereof.

It would be a good idea to future proof the station by buying a router with several network ports. E.g
Asus RT-AC88U, which has 8 network ports and supports USB modems.

Port Ranges

To keep track of what is what, we also propose the following.

Each type of instrument should belong to a specific range. E.g the external port for all of the NO​2
instruments should be in the 1000-1999 range, SO​2​ should be in 2000-2999. This way it would be very
easy to differentiate what kind of measurement is being gathered. The reason for this is that, according
to Keld, there is no way to see what type of measurement you are actually getting, when requesting data
from the teledyne instruments. And the added benefit of this would also be that the configuration of the
instruments and routers can be generic.

The same goes for the moxas web
servers. They should be in a specific
external port range like the
instruments. E.g. 8000-8999

These port ranges are not implemented
in any of our prototypes. However, in
the event that this new system was to
be implemented, we would highly
recommend doing this.

30 of 58

Issues
The proposed system does of course have its weak points. The most important one is that it has a single
point of failure. The main server.

In case of the server crashing, or otherwise becoming unavailable, no data will be gathered from the
stations. However, despite this we still believe that it is an improvement over the current system, with a
computer placed at each station.

In the current system, if a computer goes offline for some reason - someone will have to travel to the
station and attempt to fix the problem. Which can happen for all 15 stations.
But with the new system, the technicians will just have to go in the next room to fix whatever problem
occurred. The data gathered meanwhile will be stored in the instruments and the Raspberry PI for
collection as soon as the collection system comes back online.

Aside from this issue, the other known issues, such as lack of persistence in instruments, heat issues,
connectivity issues to the stations, are also present in the current system, and will therefore not be
mentioned here in relation to issues with the new system.

Prototypes for the new system
The product represents the whole redesigned data gathering system that is to potentially replace the
existing data gathering system. The system includes a lot of sub-systems which we will refer to as
sub-products. The scope of this project is not to replace the whole system, but to provide the client with
as much information as possible, to make the replacement of the existing system as easy for them as
possible.

At the start of each week we will be looking at the current sub-products we have created, and evaluate
which sub-product we should create or update to a higher version.

Our approach to the project is to create incremental prototypes of sub-products. They act as a
proof-of-concept. We try to make the best core architectural design we can, so we can present the client
with a good base to build upon, should they chose to implement our suggested system.

The prototype method we will be using is called Throwaway Prototyping . It is a rapid form of iterated 21

prototyping where we re-define requirements of the product at the end of each week.

21 Throw away prototyping - ​https://en.wikipedia.org/wiki/Software_prototyping#Throwaway_prototyping

31 of 58

https://en.wikipedia.org/wiki/Software_prototyping#Throwaway_prototyping

Steps of Throwaway prototyping:

1. Write preliminary requirements.
2. Design the prototype.
3. User experiences/uses the prototype, specifies new requirements.
4. Repeat steps 1-3 if necessary.
5. Write the final requirements.

The process of writing the preliminary requirements consists of going back to our value proposition and
the discussions we have had with the users. Then we write up all the requirements we wish to achieve,
but which might not necessarily end up in that version of the prototype. We will be focusing on the
functional requirements due to their relatability to the existing system. We might draw upon
non-functional requirements, but only for prototypes we consider of high complexity.

During the design we will draw upon the software methodologies listed in our Methodologies chapter,
adopting Extreme Programming especially, as it helps us keep the design of the prototype minimal and
simple, so we don’t waste any time creating something that holds no value.

At the end of the week we might schedule an informal meeting with one or more users, where we ask for
their input. We have a casual conversation about the product and ask them their general thoughts on
whether the requirements have been met. The success criteria will be highly influenced by the
capabilities of the existing system. The users are so few that we do not find the time spent on
formulating a questionnaire to be worth it. The users are also primarily used to a more informal mode of
communication within the department, so we expect we can engage them better in casual conversation,
thus getting more input during a discussion, than through a written questionnaire.

When writing the final requirements the sub-product might not have all of the requirements declared in
preliminary requirements. We will list all of the requirements we have finalized, and all of the ones that
have not been met. Those requirements are intended to be implemented by the client after the end of
the dissertation, in case they wish to implement the system. Any requirement that we do not finalize are
considered to be of low complexity and should not create any problems for the client in terms of
implementation.

For the git, it was decided we would be using a component focused structure sub-divided by features.
With the master branch acting as a release branch.

1st week (28th nov - 2nd dec)
The technicians and other technical personnel visiting the stations are using a program that is running
locally on each station computer, with no centralized storage of data. This program is used for logging
the actions taken at the stations, ie. swapping a bottle of gas with a fresh one.

Seeing as our intention is to remove the station computer, it would be necessary to find an alternate
solution. Creating a website to take care of the responsibilities of the aforementioned program seemed
like a good idea (see Updated System -> Value Proposition 3.a), as it would also centralize the data
generated from the technician's visits.

Based on comments and conversations with various technicians, both passing in the hallways of the
department, and at meetings, we decided that this would provide a high amount of business value,
especially considering the complexity of the user story.

32 of 58

For that reason we decided to tackle the station logging web site first.

Using the default ASP.NET template with user accounts enabled, it was very quick and easy to implement
the CRUD operations and user rights’ management on both stations and logs using Entity Framework 22

and ASP.NET Identity . 23

Controller web site v1

Requirements/Features

✓ Create log for stations, containing text, initials and date/time.

✓ Create stations, containing name and referencing logs.

New requirements/features:

● Manage span gas.

○ Which type of gas.

○ Bottle number.

○ Measured result.

○ Log event.

● Add monitor.

○ Which type of monitor.

○ Monitor number.

● Task list.

○ Create a list of tasks that need to be completed on the monthly “station trip”.

22 What is entity framework -
https://msdn.microsoft.com/en-us/library/aa937723(v=vs.113).aspx#What%20is%20Entity%20Framework
23 Introduction to ASP.NET Identity -
https://www.asp.net/identity/overview/getting-started/introduction-to-aspnet-identity

33 of 58

https://msdn.microsoft.com/en-us/library/aa937723(v=vs.113).aspx#What%20is%20Entity%20Framework
https://www.asp.net/identity/overview/getting-started/introduction-to-aspnet-identity

2nd week (5th dec - 9th dec)
After having created the logging website, we decided that it would be best to start with the instruments
next, because of the data flow starting there. Relying on the dependency inversion principle and the 24

strategy pattern , this would allow us to either consume mock data or data from an actual instrument. 25

This makes integration testing very quick, while also making it easier to write unit tests for the program.

We agreed to put the responsibility of interfacing with the instruments into a class library, which would
decouple the components from each other.

Lárus had worked with .NET Core web applications before, and advocated creating a .NET Core Class
Library that targets only the .NET standard library, which means it would be usable on linux operating
systems, like the Raspberry PI. There was a concern about the nature of the architecture and whether it 26

was truly cross-platform, but upon closer inspection of the .NET core system architecture we were
assured that that was the case, and we could see examples of this in action.

Instrument interface class library v1

24 Agile Principles, Patterns, and Practices in C#, chapter 1
ISBN: 978-0131857254
25 Strategy pattern - ​http://www.gofpatterns.com/behavioral-design-patterns/behavioral-patterns/strategy-pattern.php
26 .NET Architectural Components - ​https://docs.microsoft.com/en-us/dotnet/articles/standard/components

34 of 58

http://www.gofpatterns.com/behavioral-design-patterns/behavioral-patterns/strategy-pattern.php
https://docs.microsoft.com/en-us/dotnet/articles/standard/components

Requirements/Features

✓ Validate the format of the address:

✓ Using the Microsoft defined class IpEndPoint, testing this is redundant, as it is handled by

the class.

✓ Connect to instruments using TCP/IP:

✓ Establishes a TCP/IP connection with a TCP/IP server.

✓ Connect to Moxa adapter using TCP/IP:

✓ Establishes a TCP/IP connection with a TCP/IP server.

✓ Send commands:

✓ Sends data to the instrument through a TCP/IP network stream.

✓ Return the results:

✓ Retrieves data from the instrument through a TCP/IP network stream.

Error handling

✓ Prevent user input that is invalid, both in initializers and in any object that it is passed to.

✓ Handle not getting any response:

✓ Handles any exceptions resulting from unavailable instruments.

✓ Logging errors

✓ Used the Microsoft defined class Trace to handle logging.

35 of 58

3rd week (12th dec - 16th dec)
Having created the means to communicate with the instruments, the next natural step was to handle the
communication. We had a very short discussion about what type of application it would be and decided
on doing a WPF (Windows Presentation Foundation), even though it was the first prototype. The 27

decision was made because we envisioned the client running it on their servers and needing to
manipulate the list of stations and instruments from within it.

We quickly realized that a WPF application was not necessary. The job could easily be handled by having
a console application that would communicate with the database to retrieve the current stations and
instruments. The program could then be controlled from the logging website , which would decrease 28

the amount of programs/interfaces that the users would need to know about.

When discussing how this shift in
responsibilities would affect the controller
program we started drawing out on paper a
system diagram of how we envisioned the
controller program; its major components,
and how those components communicated
with different sub-products. In accordance
to our expectations, working on the
controller program early on, made it easier
for us to understand its interactions with
other sub-products, and helped shape our
design decisions.

We created a class library that would hold entity models (representing the actual business data) and hold
DTOs (Data Transfer Object), which would hold data when passing it along different components. The 29

models were moved out of the controller site, to allow other projects in our solution to consume them.

Instrument Interface Class Library v2

This version simply entailed re-creating the Instrument Interface Class Library without targeting .NET
Core, because referencing a .NET Core class library within .NET Frameworks is problematic as the
solution and project formats are incompatible between .NET Frameworks and .NET Core. There are ways
around this, but they did not seem worth going into at this point, since the client had not asked for
cross-platform functionality .The framework for working with these 2 project formats will in all likelihood
see updates. In the meantime this will hopefully make the process a lot easier.

27 Introduction to WPF - ​https://msdn.microsoft.com/en-us/library/mt149842(v=vs.110).aspx
28 From now on, referred to as controller site
29 Data Transfer Object - ​https://en.wikipedia.org/wiki/Data_transfer_object

36 of 58

https://msdn.microsoft.com/en-us/library/mt149842(v=vs.110).aspx
https://en.wikipedia.org/wiki/Data_transfer_object

Controller program v1

Components

● Runner​: Handles the running of the program. Initialization, termination and execution order.

● Database handler​:​ Handles communication with the database using Entity/Stored procedures to

and from the control program.

● Controller site handler​:​ ​Handles communication to and from the controller web site using

TCP/IP connection with our own defined protocol.

● Station communicator:​ ​Handles communication to and from the stations, and their active

instruments, using our own Instrument Interface Class Library.

37 of 58

● Input manager:​ Handles keyboard input by the user.

Requirements/Features

✓ Create a protocol that we can use between cross-component communication.

● Get station and instrument data from MS SQL database to Station communicator:

● Create a connection to the database.

● CRUD on the business data stored in the database (to be split later).

● Retrieve station and instrument data.

● Send measurement data.

● Pass commands from the controller site to Station communicator.

● Communicate with the instrument interface library:

✓ Have the communicator receive commands from other components (database, site).

✓ Have the communicator get measurements from station library.

● Have the communicator handle these communications with stations asynchronously.

38 of 58

● Logging events:

✓ Log status events.

✓ Log errors:

✓ Log to console.

Error handling

✓ Log errors to console.

✓ Log errors to file.

● Handle miscommuncation with Database.

✓ Handle controller site ⇔ controller program unintended commands.

● Handle asynchroneous conflicts (thread safety).

● Handle exceptions thrown from the instrument interface library:

○ Connection errors.

Retrospective

We had unexpected issues with our version control which resulted in more time being spent on dealing

with merge conflicts. To simplify the process we branched out from master into component branches.

Any time there was an update to a component we would go to that branch, implement the update, run

the unit tests, merge into master, resolve merge conflicts that might arise and run the unit tests again.

Only re-basing and merging to and from master branch was permitted unless there was an explicit need

to do otherwise. This helped us keep track of when updates had been made, and ensured that the latest

code could always be located in the same place.

There were a lot of heated arguments regarding design decisions. We discussed them, with both parties

arguing their case, but in the end the person responsible for the code had the final say.

4th week (19th dec - 23rd dec)
This week coincided with the last week before Christmas. We had discussed this the week before, and
were aware that our personal and social obligations would impact our cycle time. As such, we we
focused on report writing instead of the products.

39 of 58

5th week (26th dec - 30th dec)

Controller program v2
After having defined the core architecture and the cross-component and cross-product interactions in

version 1, we spent this week on implementing these interactions and creating the Database Handler and

the Controller Site Handler. Alongside this version we also worked on version 2 of the Controller Site. We

were able to test integration, ensuring the functionality and stability of the whole pipeline from

Controller Site to Station Communicator.

System Sequence Diagram for adding instruments through the Controller site.

This is the same procedure for adding stations

The Database Handler uses Entity Framework object relational modelling with ‘Code First models’ that

are then translated to a local database for testing, while we are working in development. It returns a list

of stations from the database.

40 of 58

Requirements/Features

✓ Create a protocol that we can use between cross-component communication.

● Get station and instrument data from MS SQL database to Station communicator:

✓ Create a connection to the database.

✓ CRUD on the business data stored in the database (to be split later).

✓ Retrieve station and instrument data.

● Send measurement data.

● Pass commands from the controller site to Station communicator.

● Communicate with the instrument interface library:

✓ Have the communicator receive commands from other components (database, site).

✓ Have the communicator get measurements from station library.

● Have the communicator handle these communications with stations asynchronously.

✓ Logging events

✓ Status

✓ Errors

✓ Information

Error handling

✓ Log errors to console.

● Log errors to file.

✓ Handle miscommunication with Database (using Entity means we gain security in error handling).

✓ Handle controller site ⇔ controller program unintended commands.

✘ Handle incorrect keyboard input (keyboard input requirement put on indefinite hold).

● Handle asynchronous conflicts (thread safety).

● Handle exceptions thrown from the Instrument Interface Library:

○ Connection errors (we pass along a false boolean value, but we need to deal with the

possibility of extended period of connection problems).

Retrospective

The team was well refreshed after Christmas and ready to tackle more programming, so we saw a better

output of code both in terms of functionality and quality.

In this version we were happy with how well our Controller site and Controller site handler

communicated with the Controller Program so the Input manager has been put on an indefinite hold.

In the end we have one unit test failing due to the Unit Testing Project not having access to Entity

Framework provider. We modified the unit test to bypass the need for accessing the database, and then

re-instated it as was. The permanent solution is to base our Entity testing environment on a pre-existing

testing project that Morten has implemented.

41 of 58

New requirements

● Process raw measurement responses.

● Aggregate measurements.

6th week (2nd jan - 6th jan)

Controller Program v3

This was the last week and we had to put a lot of resources into writing the report. We did however

decide we would create one more version of the Controller Program as a way to be able to break out of

monotonous report writing. We had looked at running the gathering of measurements asynchronously, a

complex task, which, if successful, would be of high value to the client.

When the StationCommunicator gets raw measurement data from a station’s instrument it is added to a

ConcurrentQueue collection. ConcurrentQueue is a Queue class part of .NET library that is thread-safe.

This Queue is contained in a handler that starts a thread that starts taking from the queue, until the

queue is empty and is restarted when the queue has content.

Requirements/Features

✓ Create a protocol that we can use between cross-component communication.

● Get station and instrument data from MS SQL database to Station communicator:

✓ Create a connection to the database.

✓ CRUD on the business data stored in the database (to be split later).

✓ Retrieve station and instrument data.

● Format and aggregate raw measurement responses.

● Send measurement data.

✓ Communicate with the instrument interface library:

✓ Have the communicator receive commands from other components (database, site).

✓ Have the communicator get measurements from station library.

✓ Have the communicator handle these communications with stations asynchronously.

✓ Logging events:

✓ Log status events.

✓ Log errors:

✓ Log to console.

■ Log to file.

42 of 58

Error handling

✓ Log to console.

✓ Handle miscommunication with Database.

✓ Handle controller site ⇔ controller program unintended commands.

✓ Handle asynchronous conflicts (thread safety).

● Handle exceptions thrown from the instrument interface library.

Retrospective

Improvements were done on the testability. Using dependency injection we provided the classes with 30

concrete implementation, that created mock data or gave mock responses.

There is no method in the DatabaseHandler to insert measurements in the database. That would be a

very high value requirement, however the way client wants to insert into their database is a lot more

complex than simply working with a development database, which suits our needs for prototyping.

30 What is deendency Injection - ​https://stackoverflow.com/questions/130794/what-is-dependency-injection#140655

43 of 58

https://stackoverflow.com/questions/130794/what-is-dependency-injection#140655

Code Examples
Here i will show some of the code pieces that i have created for the prototypes

Instrument communicator
As you can see here, the communicator is quite simple. It implements dependency injection through the
strategy pattern, while also enabling the dependency inversion principle. Higher level components will
only need to rely on the abstract class CommunicationHandler, and not the individual implementations.

44 of 58

CommunicationHandler

The abstract class implements general functionality, while both allowing for overwriting of two method,
and requiring individual implementation of the Response method. This is because how the instruments
reply is different. This approach means that the InstrumentCommunicator should be able to
communicate with any instrument that can communicate with TCP/IP

45 of 58

Unit tests of instrument handler

Here you can see some of the unit tests that i created to verify my code. As you can see i am utilizing the
strategy pattern for my testing.

46 of 58

CpClient
The CpClient’s job is to send commands to the control program, and receive the reply. In the control site,
it is used by the StationController, on any CRUD command. It is quite simple, and as you can see i have
omitted the implementation of some of the methods. Their names speak for themselves. It was however
the source of a problem i describe in the next section.

47 of 58

CommandResultHandler
When i added the capability to communicate with the command program in the control site, i ran into a
problem. Each call to an action on the site, would create a new instance of the controller the action lived
it. Therefore, i could not store the response in the ViewBag, or in an instance field. Using a static field
was out of the question too, since multiple people might be sending commands to the control program
at the same time. Which would result in the displayed response not necessarily being the one meant for
you.

I came up with the below solution. Since there are only a few potential users of the control site, it should
not be a problem having multiple entries in the dictionary. Keeping in mind that the ApplicationPools of 31

IIS are usually short lived too, i doubt it will ever be a problem since the process will be killed regularly,
which means the memory allocation will be freed.

31 IIS Application Pool - ​https://technet.microsoft.com/en-us/library/cc735247(v=ws.10).aspx

48 of 58

https://technet.microsoft.com/en-us/library/cc735247(v=ws.10).aspx

Reflection and conclusion
Overall, this was a very informative and educational experience.

I had the opportunity to look at scientific instruments, and figure out how to interface with them. This
gave me a chance to refresh on the socket programming, which I learned during the 3rd semester. It also
required that I figured out how to handle unreliable equipment, since the instruments did not always
handle network streams correctly. Furthermore I had to utilize my knowledge about routing, and find out
how to configure a router from a manufacturer that I did not know about.

I also had the opportunity to look at interprocess communication, and figuring out another way to
achieve the same result when it proved not to be usable for our setup. I will elaborate on this in my
presentation.

To answer the questions in the problem definition regarding learning outcome:

Personally, I believe that I would benefit from heavier reliance on scrum/kanban boards. Something
which Lárus was a great advocate for. During my internship where I worked alone, I had gotten used to
managing everything with notes on paper. But when more people are involved, it is something that I
need to remember to use.

The communication with the client, was at an acceptable level. We would often seek feedback, and show
individual pieces of the system to one or more of the stakeholders. However, there is always room for
improvement. I believe that we could have created a product that was better tailored to their
expectations with more communication, for instance implementing something similar to sprint reviews.
This is not to say that we did not live up to the agreements made. We did create the prototypes and
made the recommendation that we promised to do.

Design wise, I believe that I have done a good job. I feel like the lessons in school were both remembered
and used while designing the architecture and writing my code. Without further lessons on a higher level
or actual work experience, I do not believe that I can improve my coding or software design skills any
further.

As for the problems we set out to solve, i believe we have solved all of them.

● We have investigated the integration of the instruments with the current system, and proposed
an improvement to this.

● We have investigated how the system collected the data, and proposed a solution to this.
● We have looked into the movements and storage of the data, and proposed an improvement to

this.
● We have elaborated on the potential issues of both the current and the updated system.

49 of 58

Note regarding links:​ In case i reference a website, i have also included a date. This was the date that i
verified that the information i refer to was there. In case the website is no longer there or it has been
modified, please use the wayback machine to verify my source: ​ https://archive.org/web/web.php

Appendix
Instrument overview.

Monitor API (GAS)

SM200
(10µm, 2.5 µm)

Teom
(10µm,
2.5µm) SMPS (new) DMPS (old)

Compoun
d NOx,NO,O3,CO,SO2

Partikelconcent
ration

Partikelconce
ntration

Partikelnumber
s and size

Partikelnumbers
and size

Built in
interface Seriel or LAN Serial Serial LAN Serial

Buffer 14 days data 200 days 60 days No No

Data

minut and 30 minut
average 24 hour ½ hour 2 minutes 2 minutes

Units ppm or ppb µg/m3 µg/m3 µg/m3

Getting
data Send string Send string

Sends
automatically

Compagy
software

Compagy
software

Calibratio
n Yes At Opsis No No No

Compagn
y Teledyne Opsis RP TSI

TSI/home made

Note

One monitor for
NO,Nox, temp, press

Filter are
analyzed in lab

Filetype .day .pm, .p25 .teo, .t25 .tsi .raw, .dis

Monitor Tekran (Hg) Temperature

Flow denuder LVS (10µm,
2.5 µm) Meteorologi

Compoun
d Mercury (Hg) oC, humidity m3 (Volt)

Partikelkoncent
ration

VS,VD,HUM,RA
D

Built in
interface Serial USB

Analog (Volt)
-> USB Serial Serial

Buffer No No No 17 days No

Data 15 minutes average 5 min 5 min 24 hour Continous

50 of 58

https://archive.org/web/web.php

Units ng/m3 oC, % Volt m3

m/s, degrees,%,
w/m2

Getting
data Sends automatically Send String Send string Send string

Sends
automatically

Calibratio
n In lab only No No No No

Compagn
y NI Leckel RISØ

Note Only St. Nord

Room
temperature

AC/DC
converter

Filter must be
weighed

Data from
several sensors

Filetype .tek, tk2 .t .den .l10, .l25 .met

Monitor Sonic (meteorology)

Asiaq
Meteorologi

Flow inlet
tubes LVS-FPO LVS-ECOC

Compoun
d VD,VS,Temp

VD,VS,Temp,Ra
d etc m3 (Volt) Air volumen Air volumen

Built in
interface Serial Serial

Analog (Volt)
-> Seriel Serial Serial

Buffer No month No 17 days 17 days

Data continous 10 Hz 10 and 30 min 5 min 24 hour 24 hour

Getting
data Sends automatically Automatically Send string Send string Send string

Units m/s, degrees, oC

m/s,
degrees,%,
w/m2 Volt m3 m3

Calibratio
n Metek only By Asiaq No No No

Compagn
y Metek Cambell NI Leckel Leckel

Note

Data fromseveral
sensors Only St. Nord

AC/DC
converter

Filters are
analyzed in lab

Filters are
analyzed in lab

Filetype .snc .met .fli .fpo .fpo

Monitor HVS

51 of 58

Compoun
d Air volumen

Built in
interface Serial

Buffer SD card

Data 24 hour

Getting
data Send string

Units Volume

Calibratio
n No

Compagn
y Reimer

Note

Filters are analyzed in
lab

Filetype .hvs

Procomm Plus Script.
The formatting proved troublesome, so i put the script on pastebin. ​http://pastebin.com/MPUSktdM
it will expire 06/02-2017

52 of 58

http://pastebin.com/MPUSktdM

Diagrams

53 of 58

54 of 58

Locations
● Trello - ​https://trello.com/b/NnBT42jG/dissertation
● Win32DiskImager, 05/01-2017 - ​https://sourceforge.net/projects/win32diskimager/
● Router emulator, 05/01-2017 -

http://www.support.dlink.com/emulators/dir855/Virtual_Server.html

55 of 58

https://trello.com/b/NnBT42jG/dissertation
https://sourceforge.net/projects/win32diskimager/
http://www.support.dlink.com/emulators/dir855/Virtual_Server.html
http://www.support.dlink.com/emulators/dir855/Virtual_Server.html

Bibliography
In order of use:

● Times Higher Education World University Rankings, 05/01-2017 -
https://www.timeshighereducation.com/world-university-rankings/2017/world-ranking#!/page/
0/length/100/country/2256/sort_by/rank_label/sort_order/asc/cols/rank_only

● Agile Principles, Patterns, and Practices in C#, by Robert C. Martin and Micah Martin. ISBN:
978-0131857254

● Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative
Development (3rd Edition), By Craig Larman. ISBN: 978-0131489066

● Scrum guide, 05/01-2017 - ​https://www.scrumalliance.org/why-scrum/scrum-guide
● The kanban methodology, 05/01-2017 - ​https://www.atlassian.com/agile/kanban
● An External Replication on the Effects of Test-driven Development Using a Multi-site Blind

Analysis Approach
○ Original link: ​http://people.brunel.ac.uk/~csstmms/FucciEtAl_ESEM2016.pdf
○ Alternate link: https://drive.google.com/open?id=0BwGU_UCX-H6BSmVHZVlGZnlfZDQ
○ Authors

■ Davide Fucci, M-Group, University of Oulu Oulu, Finland ​davide.fucci@oulu.fi
■ Giuseppe Scanniello, University of Basilicata, Potenza, Italy,

giuseppe.scanniello@unibas.it
■ Simone Romano, University of Basilicata, Potenza, Italy,

simone.romano@unibas.it
■ Martin Shepperd, Brunel University, London, United Kingdom,

martin.shepperd@brunel.ac.uk
■ Boyce Sigweni, Brunel University, London, United Kingdom,

boyce.sigweni@brunel.ac.uk
■ Fernando Uyaguari, Universidad Politécnica de, Madrid, Spain,

f.uyaguari@alumnos.upm.com
■ Burak Turhan, M-Group, University of Oulu, Oulu, Finland, ​burak.turhan@oulu.fi
■ Natalia Juristo, M-Group, University of Oulu, Universidad Politécnica de, Madrid,

natalia.juristo@oulu.fi
■ Markku Oivo, M-Group, University of Oulu, Oulu, Finland, ​markku.oivo@oulu.fi

● Product information regarding the Dovado PRO router, 05/01-2017 -

http://www.dovado.com/images/PDF/DOVADO_PRO_AC_DATASHEET.pdf
● Difference between APN and VPN, 05/01-2017 -

http://smallbusiness.chron.com/difference-between-apn-vs-vpn-38815.html
● What is an SPI firewall, 05/01-2017 - ​https://www.techwalla.com/articles/what-is-an-spi-firewall
● Reference to book/publication, 05/01-2017 -

https://en.wikipedia.org/wiki/First_normal_form#cite_note-2
● What is a Raspberry PI, 05/01-2017 - ​https://pimylifeup.com/what-is-raspberry-pi/
● Raspbian: Run a Program at Startup, 05/01-2017 - ​http://www.mikeslab.net/?p=176
● Raspberry PI VNC documentation, 05/01-2017 -

https://www.raspberrypi.org/documentation/remote-access/vnc/
● Dovado products, 05/01-2017 - ​http://www.dovado.com/en/products
● Throw away prototyping, 05/01-2017 -

https://en.wikipedia.org/wiki/Software_prototyping#Throwaway_prototyping

56 of 58

https://www.timeshighereducation.com/world-university-rankings/2017/world-ranking#!/page/0/length/100/country/2256/sort_by/rank_label/sort_order/asc/cols/rank_only
https://www.timeshighereducation.com/world-university-rankings/2017/world-ranking#!/page/0/length/100/country/2256/sort_by/rank_label/sort_order/asc/cols/rank_only
https://www.scrumalliance.org/why-scrum/scrum-guide
https://www.atlassian.com/agile/kanban
http://people.brunel.ac.uk/~csstmms/FucciEtAl_ESEM2016.pdf
mailto:davide.fucci@oulu.fi
mailto:giuseppe.scanniello@unibas.it
mailto:simone.romano@unibas.it
mailto:martin.shepperd@brunel.ac.uk
mailto:boyce.sigweni@brunel.ac.uk
mailto:f.uyaguari@alumnos.upm.com
mailto:burak.turhan@oulu.fi
mailto:natalia.juristo@oulu.fi
mailto:markku.oivo@oulu.fi
http://www.dovado.com/images/PDF/DOVADO_PRO_AC_DATASHEET.pdf
http://smallbusiness.chron.com/difference-between-apn-vs-vpn-38815.html
https://www.techwalla.com/articles/what-is-an-spi-firewall
https://en.wikipedia.org/wiki/First_normal_form#cite_note-2
https://pimylifeup.com/what-is-raspberry-pi/
http://www.mikeslab.net/?p=176
https://www.raspberrypi.org/documentation/remote-access/vnc/
http://www.dovado.com/en/products
https://en.wikipedia.org/wiki/Software_prototyping#Throwaway_prototyping

● What is entity framework, 05/01-2017 -
https://msdn.microsoft.com/en-us/library/aa937723(v=vs.113).aspx#What%20is%20Entity%20Fr
amework

● Introduction to ASP.NET Identity, 05/01-2017 -
https://www.asp.net/identity/overview/getting-started/introduction-to-aspnet-identity

● Strategy pattern, 05/01-2017 -
http://www.gofpatterns.com/behavioral-design-patterns/behavioral-patterns/strategy-pattern.p
hp

● .NET Architectural Components, 05/01-2017 -
https://docs.microsoft.com/en-us/dotnet/articles/standard/components

● Introduction to WPF, 05/01-2017 -
https://msdn.microsoft.com/en-us/library/mt149842(v=vs.110).aspx

● Data Transfer Object, 05/01-2017 - ​https://en.wikipedia.org/wiki/Data_transfer_object
● What is deendency Injection, 05/01-2017 -

https://stackoverflow.com/questions/130794/what-is-dependency-injection#140655
● IIS Application Pool, 06/01-2017 -

https://technet.microsoft.com/en-us/library/cc735247(v=ws.10).aspx

57 of 58

https://msdn.microsoft.com/en-us/library/aa937723(v=vs.113).aspx#What%20is%20Entity%20Framework
https://msdn.microsoft.com/en-us/library/aa937723(v=vs.113).aspx#What%20is%20Entity%20Framework
https://www.asp.net/identity/overview/getting-started/introduction-to-aspnet-identity
http://www.gofpatterns.com/behavioral-design-patterns/behavioral-patterns/strategy-pattern.php
http://www.gofpatterns.com/behavioral-design-patterns/behavioral-patterns/strategy-pattern.php
https://docs.microsoft.com/en-us/dotnet/articles/standard/components
https://msdn.microsoft.com/en-us/library/mt149842(v=vs.110).aspx
https://en.wikipedia.org/wiki/Data_transfer_object
https://stackoverflow.com/questions/130794/what-is-dependency-injection#140655
https://technet.microsoft.com/en-us/library/cc735247(v=ws.10).aspx

